

Use-case: Big supermarket chain with a mobile loyalty app

Their questions:

- 1. How can we **increase engagement**?
- 2. How can we **become more relevant** and personalized?
- 3. How can we **reduce churn** and app-user frustration?

What they tried:

- Personalized messages based on offline segmentation
- Location based targeting
- · Time based targeting

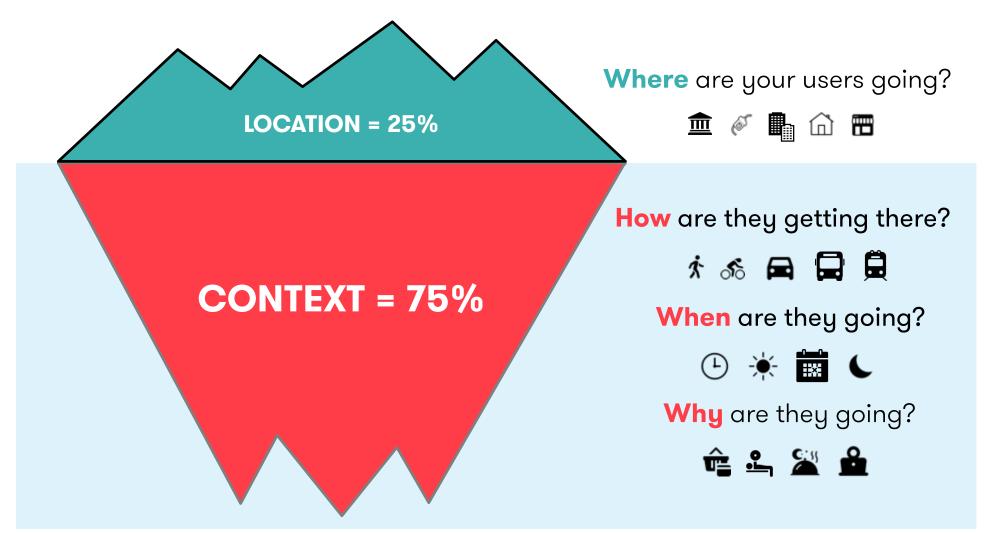
Result:

· Higher engagement (16%)

BUT

Higher churn (+43% more app uninstalls)

Reason: Location based marketing is not enough



How can Al solve this problem?

Al for behavioral modeling:

1. What

User is currently in transport

2. How

Transport mode is **car**

3. Why

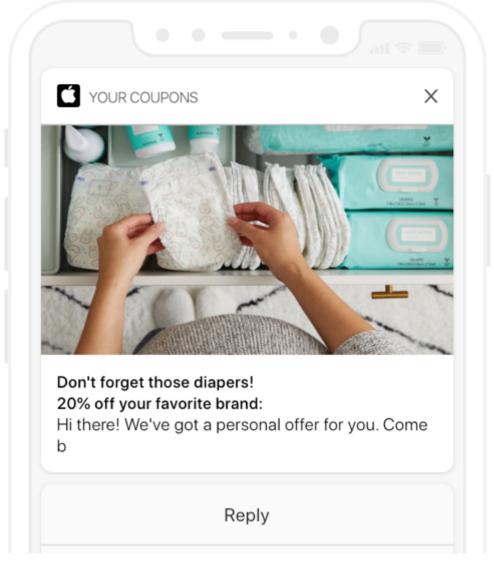
User is dropping off kids during morning commute

4. Next

Predicted to **stop at the shop**

5. Who

User is **brand-loyal** and has kids



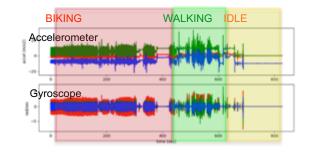
How can Al solve this problem?

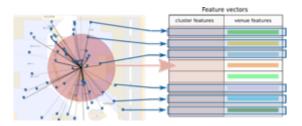
Intelligence is needed:

- 1. What & How

 Activity detection
- 2. Why
 Intent modeling
- 3. Next

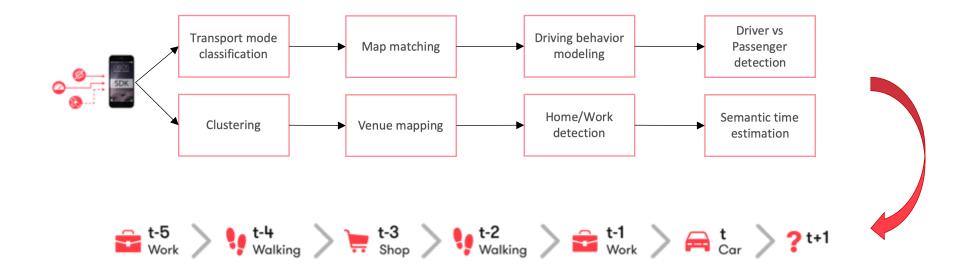
 Time-series prediction
- 4. Who
 Clustering and look-alike modeling



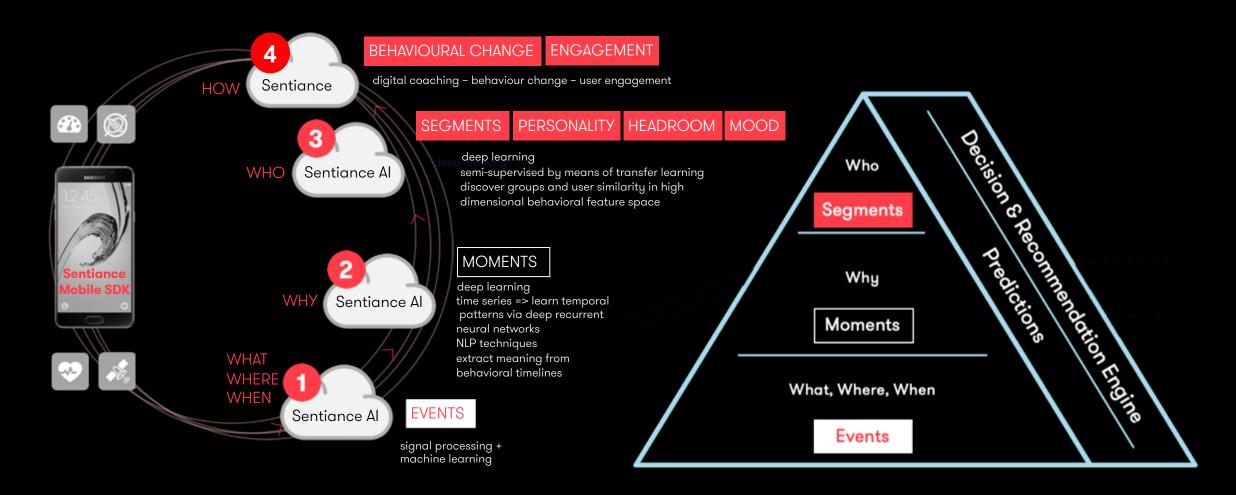


How can Al solve this problem?

Intelligence is needed:



How did we build it?



How did we build it?

A real example of hyper-personalization:

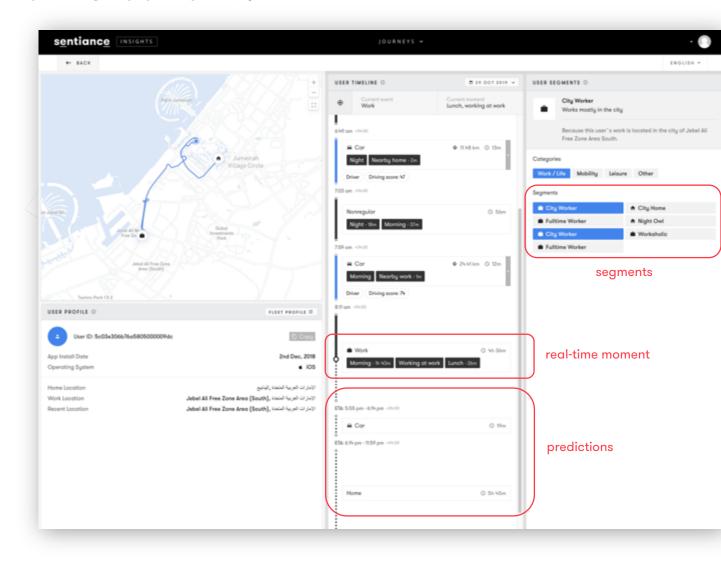
Research shows: 'People are twice as likely to engage with mobile ads during commutes and in crowded areas"

Our implementation:

- · Send coupon to user if:
 - Event: 'on a tram or train'
 - Moment: 'In commute'
 - · Prediction: 'About to stop at a shop'
 - · Segments: Brand-loyal, shopaholic, sportive

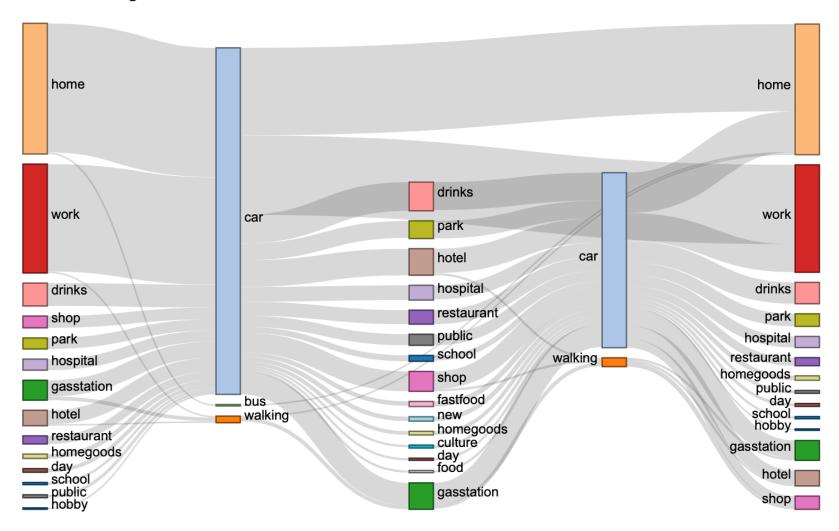
· Results:

- Engagement increased 400%
- · Churn back to baseline levels



Some example insights for this customer

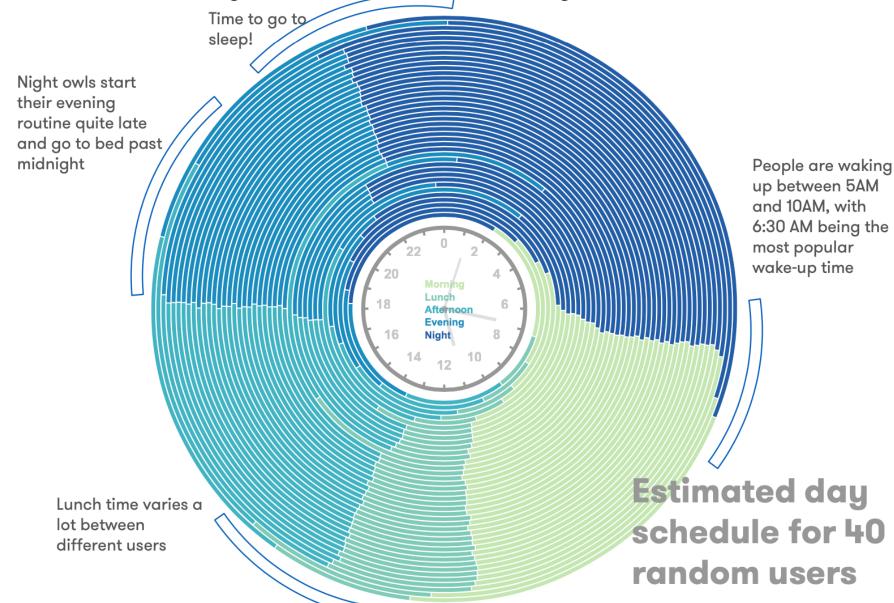
A day in life of a random user



Some segments assigned to this user:

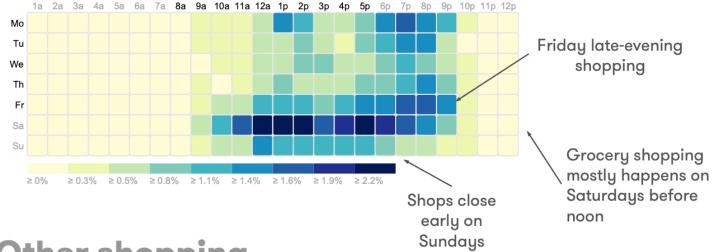
Detail can be added to the flow diagram by showing intermediate stops between origin and destinations. For example, it is clear that 'parking' is not a final destination for this user.

How do your user's biorhythms look?

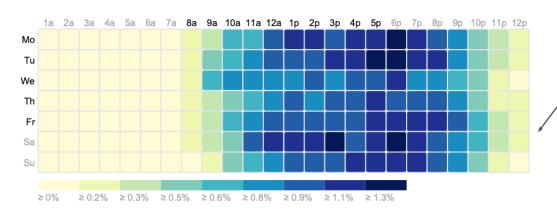


When do your users shop?

Grocery shopping



Other shopping

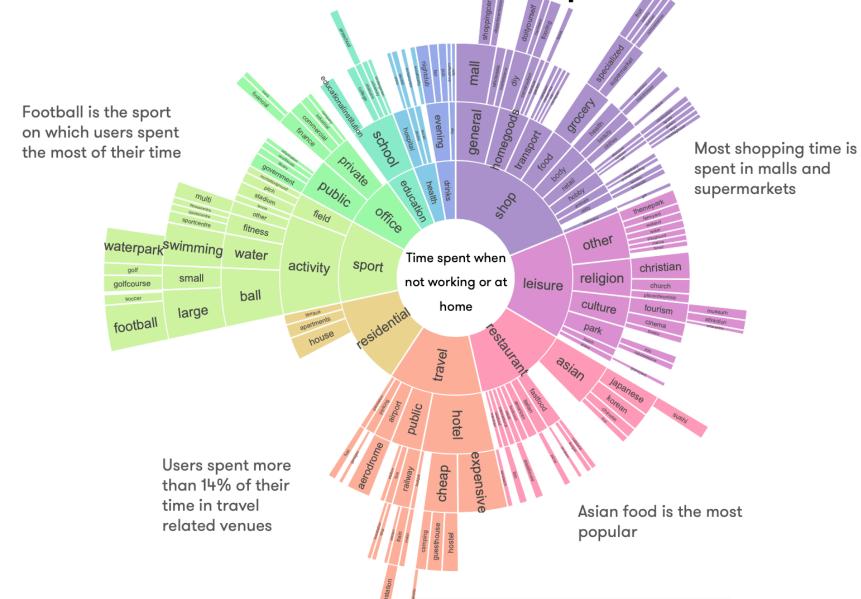


Non-grocery shopping (e.g. furniture and clothing) is more spread throughout the day Grocery shopping

955 Brand-loyal users

77026 Shop visits

How much time do users spend where?



The least amount of time was spent in:

Durations are normalized per user, and averaged across the population.

Working and commute related activities are excluded.

Leisure travelers go international

Business trips

Leisure trips

National 88% 79%
International 12% 21%

211 Beach visits

468 Cultural visits

524 Travelers

Longest stay:

Business: 17 nights Leisure: 37 nights

Main lessons learned

Data is the new oil:

1. Obtaining labeled data is expensive

- Pay students to walk around and label their transport mode
- Use specialized companies to crowd-source data labeling:
 50k EUR for 50 users x 30 days
- Develop internal tooling for data cleaning and labeling

2. Data is private

- Cannot be used to train models for other customers
- First-party: Owned by the customer
- Full transparency is the only way

Scalability matters:

1. Mlflow: Manage the ML lifecycle

- Experimentation: Which parameters worked?
- Reproducability: Which dataset was used?
- Deployment: Versioning and continuous integration

2. AWS helps us scale

- Elastic scaling: 15x higher load during peak hours!
- Reproducibility: Which dataset was used?
- One-off model training on expensive GPU machines

Do's and Don'ts

Don'ts

Let data scientists work on their own

- Developing a SOTA model in a notebook is easy
- The hard part:
 - Deployment
 - Observability
 - Scalability
 - Reproducibility
- For each Data scientist, you need 4 non-data scientists:
 - Data engineer
 - Machine learning engineer
 - Infrastructure engineer
 - Full-stack engineer

2. Say that data science cannot be agile

- · Doing research for months without baseline
- Doing research for months without deployments
- Research can be iterative!

Do's:

Data science as a citizen

- Easy access to data
- Easy access to computational resources
- Freedom to experiment

2. Work product driven

- Data scientists like to aim for SOTA
- Are super curious and like to build crazy stuff
- We need some direction
- Product team should drive Al

