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ML in Production
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ML in Production
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ML not being Supervised in Production
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ML not being Supervised in Production
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The Impact of Supervising ML in Production

Predict which customers will churn Try to retain them
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The Impact of Supervising ML in Production

Churn prediction
&
Customer retention

Churn rate 2.6%
Profit 650M

Customers 2M

Predict which customers will churn
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Try to retain them

Churn rate 2.86%
Additional Loss 1.7M
Additional Churners 5K




Nanny’ML The Solution

An Enterprise Software that monitors Al in production by:
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How does it work?

= Data Dimensions

Input: Output:
Features Predictions Actuals
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= Time Dimensions
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How does it work?

Diagnostic (& Predictive) Data Analysis
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The Future

Al Focus Today Al Focus Tomorrow
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Bridging Business Understanding & MLOps

Data Science Lifecycle

Business
Understanding

Transform, Binning Feature

On-Premises vs Cloud
Data Source Database vs Files
il cocincerine
Pipeline Streamin_gvs Batch
. Data Low vs High Frequency
Algorithims, Ensemble a
Model

Parameter Tuning Modeling Acquisition &
Retraining Training Understanding . On-prenises vs Cloud
Model management (WTCITUENTM Database vs Data Lake vs ..
Small vs Medium vs Big Data
Cross Validation Model WENTETT structured vs Unstructured
Model Reporting ERENPAIPTIIr STIIE [ B Data validation and Cleanup

A/B Testing Cleaning Visualization

Deployment Customer
Acceptance

Scoring,
Performance

monitoring, etc.
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Where we are today

= POC finished

= Rolling out a Pilot Program
" 6-8 weeks
" |nnovative companies
= That have Al running in production making business critical decisions

= Agile Customer Driven Development
v Influence the product roadmap
v Get tailor-made NannyML features
v"Solve your monitoring problems
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In summary

Al Models Degrade
Over Time

S = 8 = @ = [

No Insights Why

The World Changes Data Changes Al Value is Lost

= Understand that production data is dynamic
= Try to monitor Al in production -
= Try to track performance
= Try to detect data drift

= Try to prevent model decay

= Try to extract insights from your Al’s behaviour
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