Cybersecurity, AI and Honeytokens

Ordina Belgium

Emmanouil Perselis

Why?

• Challenges

- Alert fatigue
- Increased workload
- Human error

• Goals

- Increased alert fidelity
- Lower amount of alerts
- Increased analysis quality

Honeytokens

- Digital entities that trigger alerts when accessed
 - DNS records
 - URIs
 - Documents
 - Accounts
 - Database records
 - Registry keys

What & How?

- Alert classification
 - Combined multiple data sources
 - Makes use of business context
 - Adds honeytokens into the equation (increases true positive rate)
 - Multidisciplinary correlation engine

What & How?

- Used tools
 - Web gateway
 - AV solution
 - EDR solution
 - Splunk
 - Python & Al
 - Honeytokens

What & How?

- Used model
 - Logistic Regression
 - High accuracy
 - Simple data presentation
 - Only 2 categories
 - Comes with a performance price

- Other models tried
 - KNN
 - Was slow
 - We have many outliers
 - Many missing values
 - Naïve Bayes
 - Low quality predictions
 - Was faster though

Status & Looking forward

- Research phase
- Good results for the time being
- Checking applicability
- Checking efficacy
- Solving problems on integration of business context
- Go in acceptance in Q3 2020 Q4 2020

Lessons learned

- Certain added value
- Given that there are only 2 classes, classification is efficient
- Manual triage is still necessary
- Most difficult part is <u>adding (business) context</u> to data
- Model training & fitting is resource intensive and has to be done outside office hours

