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Introducing Glanzstoff



Glanzstoff production process inefficiencies

Challenges

• Timing of expensive maintenance operations (flushes)

• Quality of final product after long process



Predictive maintenance: when to flush?

What is the effect of flushing?
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Adjust timestamps to bring to same time block
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Adjust timestamps to bring to same time block
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Use aligned data to train (XGBoost) model



Additional insights: individual feature effects



Optimization of 13 setpoint features
Using the differential evolution algorithm

• Goal: find the settings with the lowest total predicted number of breaks
• Constraints: values must remain within observed boundaries

• Predicted reduction in breaks of up to 35%



Status & Looking forward

• First iteration of optimal settings have been reviewed by experts

• Currently awaiting first trials

• Try reinforcement learning for even more optimal control



Lessons learned

• Do not underestimate feature engineering

• Do not reinvent the wheel

• Communication is key
• Expectation management: what can vs what can’t we do with this data
• Visualise results as clear as possible
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